
DB2® DB2 Universal Database for z/OS

What’s New?

Version 8

GC18-7428-01

���

Contents

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 5

More flexibility with SQL . 5

SELECT FROM INSERT statement . 5

Generation of unique sequential numbers for applications 6

Ability to alter identity column attributes . 6

Dynamic scrollable cursors . 6

Scalar fullselects in SQL statements . 6

Integrated XML publishing functions in DB2 . 6

Common table expressions in SQL statements . 7

Recursive SQL . 7

CURRENT PACKAGE PATH special register . 7

GET DIAGNOSTICS statement . 7

Compare null values with the DISTINCT predicate . 8

Improved security . 8

New built-in functions for data encryption and decryption 8

New data encryption tool . 9

Multilevel security with row-level granularity . 9

Easier identification of system users . 9

CLIENT_ACCTNG special register . 9

CLIENT_APPLNAME special register . 9

CLIENT_USERID special register . 10

CLIENT_WRKSTNNAME special register . 10

Session variables . 10

Improved encrypted security in distributed computing environments 10

Enhanced compatibility with the DB2 family . 10

Extended limits for names and SQL statements . 11

Longer column names . 11

Longer and more complex SQL statements . 11

Extensions to SQL procedure statements . 11

Longer index keys and predicates . 11

Greater number of tables joined in a single FROM clause 11

Fewer restrictions for column functions . 11

Qualified columns in the INSERT statement . 12

ORDER BY clause for the SELECT INTO statement . 12

Expressions in the GROUP BY clause . 12

More than one DISTINCT keyword allowed in a single query 12

Additional input format for timestamp strings . 12

Explicitly defined ROWID columns are not required for large objects 12

Descriptions for plans and packages in the DB2 catalog 12

Implicit drop of declared global temporary tables at commit 12

Significant support for Unicode and long names in the DB2 catalog 12

Unicode . 13

Long names . 13

Unicode, EBCDIC, and ASCII columns in the same SQL statement 13

Network computing enhancements . 13

Increased portability of applications through consistent access to DB2 family servers 13

Improved performance for remote queries . 14

Improvements in connectivity . 15

IBM z/OS Application Connectivity to DB2 for z/OS feature 15

© Copyright IBM Corp. 2004, 2007 iii

ODBC expands support for encoding schemes . 16

Scalability and performance . 16

64-bit virtual storage . 17

Materialized query tables . 18

Ability to use an index in more situations . 18

Capability to index predicates that have mismatched data types 18

Stored variable-length index keys . 18

Backward index scans for avoiding sort operations . 19

Additional distribution statistics for improved optimization 19

Improved optimization for dynamic SQL . 19

Improved trigger performance . 19

More parallelism for sort operations . 20

Performance enhancements for star join qualified queries 20

Multiple fetches and inserts allowed within a single SQL statement 20

4096 partitions in a partitioned table space . 20

Greater resource control with stored procedures and user-defined functions 22

Reduced overhead costs for data sharing workloads . 22

Reduced lock propagation in the coupling facility . 22

Improved control for accounting aggregation . 22

Improved package-level accounting . 23

Reliability, availability, and serviceability . 23

Greater availability and flexibility with online schema evolution 23

Change column types and lengths . 24

Add columns to an index . 24

Add, rotate, or rebalance partitions dynamically . 24

Change the partitioning and clustering of the data in your tables 24

Greater data availability with data-partitioned secondary indexes 25

More flexibility and faster recovery with system-level point-in-time recovery 25

Improved utility functions . 26

Online REORG utility . 26

Online CHECK INDEX utility . 27

LOAD and UNLOAD utilities . 27

RUNSTATS distribution statistics . 27

Autonomic restart . 27

Enhanced LPL recovery processing . 27

Change more parameters online without recycling DB2 . 28

Increased maximum number of active and archive log data sets 28

Autonomic space allocation . 28

iv What’s New?

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS?

IBM delivers enhancements to DB2 UDB for z/OS that support your needs in the

zSeries environment. Version 8 of DB2 UDB for z/OS delivers improvements in the

following areas:

v “More flexibility with SQL”

v “Improved security” on page 8

v “Enhanced compatibility with the DB2 family” on page 10

v “Scalability and performance” on page 16

v “Reliability, availability, and serviceability” on page 23

More flexibility with SQL

Version 8 greatly expands support for SQL functions in online transaction

processing environments through the following enhancements:

v “SELECT FROM INSERT statement”

v “Generation of unique sequential numbers for applications” on page 6

v “Ability to alter identity column attributes” on page 6

v “Dynamic scrollable cursors” on page 6

v “Scalar fullselects in SQL statements” on page 6

v “Integrated XML publishing functions in DB2” on page 6

v “Common table expressions in SQL statements” on page 7

v “Recursive SQL” on page 7

v “CURRENT PACKAGE PATH special register” on page 7

v “GET DIAGNOSTICS statement” on page 7

v “More than one DISTINCT keyword allowed in a single query” on page 12

SELECT FROM INSERT statement

Recent releases of DB2 have provided enhancements (such as ROWID columns,

identity columns, and triggers) in which DB2 or a trigger, rather than an

application program, inserts data into DB2 tables. Before Version 8, you could not

immediately determine the values that were inserted into DB2 tables by

mechanisms other than application programs. Now, in Version 8, you can select

values from rows that are being inserted into a DB2 table by specifying the

SELECT FROM INSERT statement. The rows that are inserted into the target table

produce a result table; the columns of the result table can be referenced in the

SELECT list of the query. When you insert one or more new rows into a table, you

can retrieve the following values from the result table:

v The value of an automatically generated column such as a ROWID column or an

identity column

S

L

EL

A

E .CT

E

S

E

A

MP
L

NO,
T

0

N M

E

E

G

, S

V

A

A

AR

C

Y F

L

R

E

)

OM DS

L

N
8610.EMH PWEREED

L
E

V
E

> (S

;

E

P

T (EDL V

1

E

6

L) F

N

R

S

OM
D

8
M

Figure 1. Version 8 of DB2 UDB for z/OS gives you more flexibility with SQL.

© Copyright IBM Corp. 2004, 2007 5

v Any column values that are the result of an expression

v Any default values for columns

v All values for an inserted row, without specifying individual column names

v All values that are inserted by a multiple-row INSERT operation

v Values that are changed by a BEFORE INSERT trigger

Generation of unique sequential numbers for applications

In prior releases and in Version 8, identity columns are used to generate sequential

numbers; however, an identity column is a column of a table and is therefore

associated with the table. Version 8 of DB2 UDB for z/OS introduces a new SQL

data object, sequence, that provides recoverable, unique sequential numbers for

applications. This data object also enhances the portability of your applications

across the DB2 family and other vendor operating systems. In contrast to identity

columns, sequences are stand-alone objects that applications can use to avoid

concurrency and performance problems that can result when applications generate

their own sequence numbers. After a sequence is defined, it can be concurrently

accessed and incremented by many users, including multiple DB2 members in a

data sharing group.

Ability to alter identity column attributes

Since identity columns were first introduced in Version 6, many users have asked

for the ability to alter many of the attributes of identity columns. With Version 8,

you can use the ALTER COLUMN clause of the ALTER TABLE statement to

change all of the attributes of an identity column except the data type. The ability

to alter attributes of identity columns eliminates the need to drop and re-create a

table, which makes identity columns extremely flexible to use. For example, you

can now alter the sequence attributes of existing identity columns, restart the

column values from the new value, avoid minimum and maximum values, and

control the order in which column values are generated.

Dynamic scrollable cursors

Version 7 provided the static scrollable cursor function in which scrolling is

performed on a materialized global temporary table. Version 8 extends the

scrollable cursor function by implementing a dynamic scrollable cursor. A dynamic

scrollable cursor lets applications scroll directly on the base table while accessing

the most current data, including newly inserted rows. The dynamic scrollable

cursor function is particularly beneficial for large result sets that would otherwise

need to be materialized. Dynamic scrolling is also supported by data-partitioned

secondary indexes, index scans, and table space scans.

Scalar fullselects in SQL statements

Version 8 of DB2 UDB for z/OS adds more power to your queries and gives you

more flexibility with your applications across the DB2 family. DB2 now supports

scalar fullselects (with some restrictions) wherever expressions are allowed in SQL

statements. Each scalar fullselect within an SQL statement returns a single row that

consists of a single column.

Integrated XML publishing functions in DB2

In Version 8, DB2 UDB for z/OS enhances its leadership as an enterprise database

server by providing a set of SQL built-in functions that allow applications to

generate XML data from relational data with high performance. The XML

6 What’s New?

publishing functions can reduce application development efforts in generating

XML data for data integration, information exchange, and Web services. With XML

publishing functions, DB2 can:

v Generate XML elements with optional attributes from columns and expressions

v Generate XML data with hierarchical structures, through grouping and

concatenation, for data that has parent-child relationships

Common table expressions in SQL statements

Version 8 provides improved usability and consistency across the DB2 family

through support for common table expressions in SQL statements. A common table

expression is like a temporary view that is defined and used for the duration of an

SQL statement. You can reference each common table expression many times in an

SQL statement; all references to a common table expression share the same result

table. In contrast, regular views or nested table expressions are derived each time

that they are referenced. Common table expressions can also improve performance

in some cases because values are computed once rather than several times.

Recursive SQL

In Version 8, you can use common table expressions to create recursive SQL. If a

fullselect of a common table expression contains a reference to itself in a FROM

clause, the common table expression is known as a recursive common table expression.

Common table expressions and recursive SQL improve usability and consistency

within the DB2 UDB family. In some cases, common table expressions and

recursive SQL can be used to improve performance because values are derived

once rather than several times. Queries that use recursion are useful in applications

like bill-of-materials applications, network planning applications, and reservation

systems.

CURRENT PACKAGE PATH special register

Support for a new special register, CURRENT PACKAGE PATH, reduces network

traffic, simplifies application coding, and improves processing time and elapsed

time for stored procedures, user-defined functions, Java programs that use SQLJ,

and applications that use DRDA from a z/OS requester. Many installations use

more than one collection for packages. In prior releases, applications that do not

use plans must issue the SET CURRENT PACKAGESET statement each time a

package from a different collection is used.

With support for the CURRENT PACKAGE PATH special register in Version 8, an

application programmer can specify a list of package collections in one SET

CURRENT PACKAGE PATH statement. The new SET CURRENT PACKAGE PATH

special register also lets you implement a nested procedure or a user-defined

function, regardless of your run-time environment, and lets you specify multiple

collections.

GET DIAGNOSTICS statement

The GET DIAGNOSTICS statement returns diagnostic information about the

previous SQL statement that was executed, and is consistent with the ANSI/ISO

Core Level SQL Standard for 1999. The GET DIAGNOSTICS statement in Version 8

is more robust and less restrictive than the SQLCA. You can use the GET

DIAGNOSTICS statement to request information about:

v The entire SQL statement. In addition, the GET DIAGNOSTICS statement can

return longer names.

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 7

v Conditions, including multiple conditions for multiple-row statements, and the

error message that is associated with an individual error. GET DIAGNOSTICS

supports SQL error message tokens that are greater than 70 bytes.

v Connections, if the SQL statement was a CONNECT statement.

You can issue the GET DIAGNOSTICS statement from an embedded application

and from within an SQL procedure.

Compare null values with the DISTINCT predicate

The new DISTINCT predicate lets you compare null values and simplifies the SQL

that you need to write when you need to find values that might be null. Two

forms of the DISTINCT predicate are:

IS DISTINCT FROM

Creates an expression in which both values are not equal or one

value is null.

IS NOT DISTINCT FROM

Creates an expression in which one value is equal to another value,

or both values are null.

Improved security

Version 8 provides new options for e-business and high security with multilevel

security and row level security. Together, these improvements let you identify

system users more easily and significantly increase the granularity of your security

authorizations. These improvements result in additional flexibility for applications

and SQL. Other new features, such as encryption, also improve security. The

following sections provide more details about security improvements in Version 8:

v “New built-in functions for data encryption and decryption”

v “New data encryption tool” on page 9

v “Multilevel security with row-level granularity” on page 9

v “Easier identification of system users” on page 9

v “Session variables” on page 10

v “Improved encrypted security in distributed computing environments” on page

10

New built-in functions for data encryption and decryption

Version 8 of DB2 UDB for z/OS provides new built-in functions for data

encryption and decryption that let you protect valuable data as it is stored in or

retrieved from a DB2 subsystem. The ENCRYPT function lets you encrypt and

store data in columns of DB2 tables. You can copy, restore, or move encrypted data

between DB2 subsystems.

DB2 gives you the flexibility to encrypt all values in a column of data with the

same (or common) password or to allow many different passwords within a

column. For example, you can set up a common password that lets users access a

specific view of the data. Or you can let individual users create their own

passwords when they set up an account with their credit card numbers and related

information on an e-business Web site.

Additional built-in functions provide support for generating unique sequential

values in a table, decrypting encrypted data, and setting up password protection.

8 What’s New?

New data encryption tool

IBM Data Encryption for IMS and DB2 Databases, one of the IBM DB2 and IMS

Tools products, is a single tool that you can use to protect sensitive IMS and DB2

UDB for z/OS data. In DB2, data encryption and decryption is implemented

through the standard EDITPROC exit routine. The exit code uses the zSeries and

S/390® Crypto Hardware to encrypt data for storage and decrypt data for

application use. This tool can help you save the time and effort that is required to

write and maintain your own encryption software. For additional information

about IBM Data Encryption for IMS and DB2 Databases, see www.ibm.com/
software/data/db2imstools/

Multilevel security with row-level granularity

Multilevel security is a security policy that lets you classify data and users based

on a system of hierarchical security levels that is combined with a system of

nonhierarchical security categories. The goals of multilevel security are twofold: To

prevent individuals from accessing information that is classified at a level that is

higher than their authorization allows, and to prevent individuals from

declassifying information.

Version 8 of DB2 UDB for z/OS supports multilevel security with row-level

granularity, which lets you restrict individual user access to a specific set of rows

in a table. Multilevel security with row-level granularity offers several advantages

over current authorization techniques:

v Security enforcement is mandatory and automatic; a user is checked at run time.

This technique complements existing discretionary checks.

v You can perform security checks that are difficult to express through traditional

SQL views or queries.

v Multilevel security does not rely on special views or database variables to

provide row-level security control.

v Security controls are consistent and integrated across the system so that you can

avoid defining users, objects, access, and security labels more than once. Access

to files, database, printers, terminals, and other resources can have a single

security control point.

Easier identification of system users

Prior to Version 8, if you have a large server, such as WebSphere Application

Server, connected to DB2, all the threads for a connection show a single identity

(the server). Now, Version 8 provides four new special registers that you can use in

your applications to more easily identify system users.

CLIENT_ACCTNG special register

The CLIENT_ACCTNG special register contains the current value of the

accounting string from the client information that is specified for a connection.

Now you can get the current value of the accounting string that is used in a

specific connection. For example:

SET :ACCT_STRING = CLIENT_ACCTNG

CLIENT_APPLNAME special register

The CLIENT_APPLNAME special register contains the value of the application

name from the client information that is specified for a connection. Now you can

select which departments can use the application that is used in a specific

connection. For example:

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 9

SELECT DEPT

 FROM DEPT_APPL_MAP

 WHERE APPL_NAME = CLIENT_APPLNAME

CLIENT_USERID special register

The CLIENT_USERID special register contains the value of the client user identifier

from the client information that is specified for a connection. Now you can find

out in which department a current client user ID works. For example:

SELECT DEPT

 FROM DEPT_USERID_MAP

 WHERE USER_ID = CLIENT_USERID

CLIENT_WRKSTNNAME special register

The CLIENT_WRKSTNNAME special register contains the value of the

workstation name from the client information that is specified for a connection.

Now you can get the workstation name that is used for a particular connection.

For example:

SET :WS_NAME = CLIENT_WRKSTNNAME

Session variables

Support for session variables in Version 8 gives you another means by which to

provide information to applications. DB2 sets some session variables, and you can

set other session variables in the connection and signon exit routines. A new

built-in function, GETVARIABLE, retrieves the values of a session variable. You can

use this function to enforce security policies in views, triggers, stored procedures,

and constraints. Application programmers and SQL users can now access the

information that is set by DB2: Plan names, package names, DB2 version

identifiers, security labels, and system CCSIDs. If you require more general,

flexible controls for primary security, you can use session variable information to

complement other security mechanisms.

Improved encrypted security in distributed computing

environments

New Distributed Relational Database Architecture™ (DRDA®) security options

provide the following data security improvements in distributed computing

environments:

v DB2 UDB for z/OS servers can provide secure, high-speed data encryption and

decryption.

v DB2 UDB for z/OS requesters now have the option of encrypting user IDs and

optionally, passwords when they connect to remote servers. Requesters can also

encrypt security-sensitive data when they communicate with servers, so that the

data is secure when it travels over the network.

Enhanced compatibility with the DB2 family

The drive toward family compatibility continues in Version 8 with:

v “Extended limits for names and SQL statements” on page 11

v “Significant support for Unicode and long names in the DB2 catalog” on page 12

v “Network computing enhancements” on page 13

v “IBM z/OS Application Connectivity to DB2 for z/OS feature” on page 15

v “ODBC expands support for encoding schemes” on page 16

Most of the enhancements that make SQL more flexible, as discussed in “More

flexibility with SQL” on page 5, also improve compatibility across the DB2 family.

10 What’s New?

The best reference for developing applications that are portable across the DB2

family is IBM DB2 Universal Database SQL Reference for Cross-Platform Development,

available at www.ibm.com/software/db2zos/library.html

This book is updated as changes in SQL language elements are implemented across

members of the DB2 family.

Extended limits for names and SQL statements

Version 8 of DB2 UDB for z/OS takes a giant leap over the current limits for

column names, for SQL statements, for index keys and predicates, and for the

number of tables that can be joined in a single FROM clause with the following

enhancements:

Longer column names

In Version 8, the maximum length for table and view names is extended from 18

bytes to 128 bytes. The maximum length of column names is changed from 18

bytes to 30 bytes. Names for many other objects, such as indexes, statements,

schemas, procedures, and triggers are also extended to 128 bytes.

Longer and more complex SQL statements

SQL statements can now be up to 2 MB in length. A number of the Version 8

capabilities stretch the limit on the size of an SQL statement. Long names and

support for up to 4096 partitions require more space. An SQL procedure must be

stated completely within a single SQL statement. Other changes in DB2 allow

larger structures and, therefore, larger statements. SQL statements that are too large

or too complex become very rare in the Version 8 environment.

Extensions to SQL procedure statements

In Version 8, the 2-MB extension to the length of an SQL statement also applies to

the CREATE PROCEDURE statement. Specifically, the length of an individual SQL

procedure statement, which consists of SQL control statements and SQL statements

in the procedure body, is extended to 2 MB. As a result, if you specify an SQL

control statement as the procedure body, you can include multiple SQL procedure

statements within that control statement, each of which is now extended to 2 MB.

This enhancement significantly increases the power and flexibility of SQL

procedures.

Longer index keys and predicates

The maximum length of an index key is increased from 255 bytes to 2000 bytes.

Similarly, the maximum length for a predicate operand is increased from 255 bytes

to 32 704 bytes, which is the maximum length of a VARCHAR column.

Greater number of tables joined in a single FROM clause

Prior releases of DB2 let you join up to 15 tables in a single FROM clause. Many

users need to run queries that join more than 15 tables. In some cases, users need

to join as many as 80 tables; the trend is moving toward joining even more tables.

Version 8 continues to meet user needs by offering support for joining up to 225

tables in a single FROM clause.

Fewer restrictions for column functions

The argument of a column function is a set of like values that is derived from an

expression. Prior to Version 8 of DB2, the expression for the argument was

required to include a reference to a column (which was referred to as a column

function). In Version 8, you no longer need to specify a column name in the

expression. Because a column reference is no longer required, column functions are

now called aggregate functions.

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 11

Qualified columns in the INSERT statement

In prior releases of DB2, you cannot qualify the names of columns when you insert

data into a column. In Version 8, you can use qualified column names in an

INSERT statement just like you can in an UPDATE statement.

ORDER BY clause for the SELECT INTO statement

The SELECT INTO statement must produce a result that contains a single row.

Prior to Version 8, you could specify the FETCH FIRST 1 ROW clause to ensure

that only a single row was returned if the result set of the query could result in

more than one row. However, you could not specify the ORDER BY clause to affect

which row was returned. With Version 8, you can now specify ORDER BY. When

you use both the FETCH FIRST 1 ROW and ORDER BY clauses, the result set is

ordered first, and then the first row is returned.

Expressions in the GROUP BY clause

To enable greater portability of applications, Version 8 of DB2 UDB for z/OS lets

you specify the same expressions in the GROUP BY clause that you can specify in

HAVING, SELECT, and ORDER BY clauses. Now you can have family consistency

without rewriting your SQL statements.

More than one DISTINCT keyword allowed in a single query

Version 8 enhancements to SQL support give you the flexibility to use more than

one DISTINCT keyword in a single query. As a result, you no longer need to write

multiple queries to retrieve multiple distinct column values.

Additional input format for timestamp strings

In addition to using a dash to separate the date portion and the time portion of a

timestamp string, you can now use a blank as the separator. The ODBC and JDBC

string representations of a timestamp use the format in which the blank is the

separator.

Explicitly defined ROWID columns are not required for large

objects

In Version 8, you no longer need to explicitly define a ROWID column when you

define a large object (LOB) column. If a ROWID column does not exist when you

define a LOB column with either the ALTER TABLE or CREATE TABLE statement,

DB2 implicitly generates a ROWID column.

Descriptions for plans and packages in the DB2 catalog

You can now provide descriptions for plans and packages in the DB2 catalog.

Support for comments for plans and packages simplifies documenting and tracking

your objects and increases compatibility within the DB2 UDB family.

Implicit drop of declared global temporary tables at commit

In Version 8, you can specify that DB2 is to implicitly drop declared global

temporary tables at a commit operation. The new ON COMMIT DROP TABLE

clause of the DECLARE GLOBAL TEMPORARY TABLE statement lets you drop

the declared global temporary table at commit if no open cursors on the table are

defined as WITH HOLD. This enhancement is particularly important for

distributed applications and stored procedures because cleanup can occur when

cursors are closed.

Significant support for Unicode and long names in the DB2

catalog

Architectural changes in Version 8 expand the DB2 catalog for long names and

Unicode.

12 What’s New?

Unicode

With Version 8 comes significant support for Unicode, which means that you can

manage data from around the world. DB2 now converts any SQL statement to

Unicode before parsing; as a result, all characters parse correctly. DB2 also supports

hexadecimal string constants.

Long names

The following enhancements for long names in Version 8 make DB2 UDB for z/OS

compatible with other members of the DB2 family:

v Longer string constants (up to 32 704 bytes)

v Longer index keys (up to 2000 bytes)

v Longer predicates (up to 32 704 bytes)

v Longer object names (up to 30 characters for column names and up to 128

characters for most other SQL objects)

Unicode, EBCDIC, and ASCII columns in the same SQL

statement

Prior to Version 7, DB2 supported a limited set of coded character set identifiers

(CCSIDs) to store data in EBCDIC and ASCII encoding schemes. Version 7 of DB2

for z/OS and OS/390 introduced the Unicode encoding scheme to address the

problems that are encountered when users who live in different geographies and

who speak many different languages interact with the same DB2 server. The

Unicode encoding scheme represents the characters of many different geographies

and languages. With Version 7 support for the Unicode encoding scheme, you

cannot reference table objects that are defined with different encoding schemes in

the same SQL statement.

Version 8 further expands DB2 UDB for z/OS support of multiple encoding

schemes by letting you reference tables or table functions with different CCSIDs in

the same SQL statement. Support for multiple CCSIDs gives you the flexibility to

join tables that have Unicode, EBCDIC, and ASCII columns.

Network computing enhancements

Version 8 of DB2 UDB for z/OS provides the following enhancements for network

computing:

v “Increased portability of applications through consistent access to DB2 family

servers”

v “Improved performance for remote queries” on page 14

v “Improvements in connectivity” on page 15

Increased portability of applications through consistent access

to DB2 family servers

In prior releases, differences in access paths for applications that run on DB2 UDB

for Linux, UNIX® and Windows® and on DB2 UDB for z/OS required duplication

of effort in developing and testing applications for the different run-time

environments. In addition, accessing a DB2 UDB for Linux, UNIX and Windows

server and a DB2 UDB for z/OS server required different database connection

protocols. Each connection protocol, in turn, defined a different set of methods to

implement the same functions.

Enhancements in Version 8 remove roadblocks to performance and DB2 family

compatibility by providing support for a common client and standardizing

database connection protocols based on the Open Group Technical Standard DRDA

Version 3. Three components comprise the common client: A C common client for

ODBC, a Java common client for SQLJ and JDBC, and an administrative client.

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 13

Together, these components provide consistent access to servers across DB2

environments through a common run-time environment that has a single access

path for all applications. (See Figure 2.) As a result, new function and new

applications can go into production more quickly because you can write an

application once and use it in any of the DB2 common client environments.

Improved performance for remote queries

Version 8 provides the following new function to improve performance for remote

queries:

v Version 8 provides a new server interface to boost the performance of processing

remote fetches.

v Multiple-row fetch and multiple-row insert functions improve the DRDA

interface to DB2 and provide a more efficient approach for generating query

blocks. DB2 builds the query directly into the communication buffer in a single

request, which minimizes the number network operations that are required to

generate a single query block.

v Improvements to DRDA support in DB2 improve the performance of read-only,

single-row cursors.

v The SQL cancel function allows a JDBC or CLI application to cancel

long-running requests on a DB2 UDB for z/OS server.

Figure 2. The DB2 common clients offer increased portability of your applications through

consistent access to DB2 family servers.

14 What’s New?

Improvements in connectivity

As a result of support for Version 3 of Open Group Technical Standard DRDA, the

following connectivity improvements in Version 8 of DB2 UDB for z/OS are

available:

v A DB2 database for Linux, UNIX, and Windows is known in the network by its

database name. Applications use the database name to connect to an instance of

a DB2 UDB for Linux, UNIX and Windows database. When DB2 is deployed to

a large number of servers in a Linux, UNIX, or Windows environment, the

database is commonly deployed with the same name at all locations. A database

administrator can now specify (in the new DBALIAS column in the table

SYSIBM.LOCATIONS) multiple locations for a DB2 UDB for Linux, UNIX and

Windows database that is deployed in multiple locations. As a result, a DB2

UDB for z/OS requester can now access multiple DB2 databases in the Linux,

UNIX, and Windows environments that have the same name but different

network addresses.

v A DB2 server is known in a network by its location name. Applications use the

location name to identify an instance of a DB2 subsystem or a group of DB2

subsystems that share data. When you migrate two or more DB2 subsystems to

a single data sharing group, you must consolidate multiple locations into a

single location (migrating several subsystems to a single data sharing group is a

complex task that might require other tools). After the locations are consolidated,

you must change all applications that use the old location name to access the

location name of the new data sharing group. When a large number of remote

applications are deployed across a network, changing each application to use the

new location name simultaneously is difficult. To support migration from

multiple locations to a single location, DB2 lets you define eight location alias

names for a DB2 subsystem or for a group of data-sharing DB2 subsystems. A

location alias is another name that a requester can use to access a DB2

subsystem.

v You can also use a location alias with a TCP/IP port number to allow

connections to a subset of data sharing members from DRDA requesters that

connect to DB2 UDB for z/OS through TCP/IP.

v A database administrator can now override the automatic TCP/IP workload

balancing function in a data sharing environment by setting up rows in the new

SYSIBM.IPLIST table at a requester in conjunction with defining location aliases

at the server. With the new SYSIBM.IPLIST table, a database administrator can

define a specific member or a subset of members in a data sharing group. With

this new service, applications can route requests by using a name that is

different from the group location name.

v Version 8 also adds DRDA XA protocol support, which enables distributed

transactions that implement the Java 2 Platform, Enterprise Edition (J2EE) Java

Transaction Service (JTS), and Java Transaction API (JTA) specifications.

IBM z/OS Application Connectivity to DB2 for z/OS feature

z/OS Application Connectivity to DB2 for z/OS is a no-charge, optional feature of

DB2 UDB for z/OS. This feature consists of a component known as the DB2

Universal Database Driver for z/OS, Java edition. This pure Java, type 4 JDBC

driver is designed to deliver high performance and scalable remote connectivity for

Java-based enterprise applications on z/OS to a remote DB2 for z/OS database

server. The driver:

v Supports JDBC 2.0 and 3.0 specifications and Java Development Kit, Version 1.4

to deliver the maximum flexibility and performance that is required for

enterprise applications

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 15

v Delivers robust connectivity to DB2 for z/OS and the WebSphere Application

Server for z/OS

v Supports distributed transactions

v Allows custom Java applications that do not require an application server to run

in a remote partition and connect to DB2 for z/OS

The DB2 Universal JDBC Driver is a single driver that includes JDBC type 2 and

JDBC type 4 behavior and SQLJ support. When an application loads the DB2

Universal JDBC Driver, a single driver instance is loaded for type 2 and type 4

implementations. The application can make type 2 and type 4 connections by using

this single driver instance. The DB2 Universal JDBC Driver supports the following

JDBC and SQLJ functions:

v Most of the methods that are described in the JDBC 1.2 and JDBC 2.0

specifications and some of the methods that are described in the JDBC 3.0

specifications

v Connection pooling

v Global transactions that run on WebSphere Application Server, Version 5.0 and

later

v Distributed transaction support that implements the Java 2 Platform, Enterprise

Edition (J2EE) Java Transaction Service (JTS), and Java Transaction API (JTA)

specifications

ODBC expands support for encoding schemes

ODBC now supports Unicode formats UTF-8 and UCS-2. In addition, a new ODBC

initialization file keyword, CURRENTAPPENSCH, lets you specify the encoding

scheme that you want the ODBC driver to use for input and output of host

variable data, SQL statements, and all character string arguments of the ODBC

application programming interfaces. You can specify one of the following encoding

schemes: Unicode, EBCDIC, or ASCII.

Scalability and performance

In Version 8, DB2 breaks through limits and sets new heights for scalability and

performance with:

v “64-bit virtual storage” on page 17

v “Materialized query tables” on page 18

v “Ability to use an index in more situations” on page 18

v “Additional distribution statistics for improved optimization” on page 19

v “Improved optimization for dynamic SQL” on page 19

v “Improved trigger performance” on page 19

v “More parallelism for sort operations” on page 20

v “Performance enhancements for star join qualified queries” on page 20

v “Multiple fetches and inserts allowed within a single SQL statement” on page 20

v “4096 partitions in a partitioned table space” on page 20

v “Greater resource control with stored procedures and user-defined functions” on

page 22

v “Reduced overhead costs for data sharing workloads” on page 22

v “Reduced lock propagation in the coupling facility” on page 22

v “Improved control for accounting aggregation” on page 22

v “Improved package-level accounting” on page 23

16 What’s New?

64-bit virtual storage

Version 8 of DB2 UDB for z/OS, through exclusive integration with the IBM

zSeries 800, 900, or the equivalent, now supports 64-bit virtual storage. The zSeries

64-bit architecture allows DB2 UDB for z/OS to move various storage areas above

the 231-byte (2-GB) bar. The single large address space of up to 264 bytes (16

exabytes) in Version 8 is 8 billion times larger than the address space that is

available in Version 7. How big is 8 billion times larger? It is the difference

between 5 centimeters and the distance from the earth to the moon. (See Figure 4.)

Or, consider that if you start now with 2-GB of virtual storage and double it every

year, you will reach the limit of 16 exabytes in 33 years. The immense size of the

address space in Version 8, no matter how you visualize it, improves scalability

and availability and gives you more flexibility to manage virtual storage.

Figure 3. Version 8 of DB2 UDB for z/OS breaks through limits and sets new heights for

scalability and performance.

Figure 4. Relative size comparison of 31-bit virtual storage on OS/390 to 64-bit virtual storage

on z/OS

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 17

Materialized query tables

Decision-support queries typically operate on large amounts of data (1 to 10

terabytes) to perform multiple joins and complex aggregation. To reduce the

elapsed time of decision-support queries, Version 8 of DB2 UDB for z/OS supports

materialized query tables. A materialized query table contains materialized data

that is derived from one or more source tables that are specified by a fullselect in

an SQL expression. (See Figure 5.) DB2 can then use the materialized data to

answer a query more efficiently. A new clause on the CREATE TABLE statement

lets you control whether a materialized query table is to be used automatically to

answer queries. DB2 also lets you specify, within a query, whether you want DB2

to take advantage of available materialized query tables.

Ability to use an index in more situations

Version 8 of DB2 UDB for z/OS gives you the flexibility to use an index in more

situations for improved scalability and better performance. Improvements include:

v “Capability to index predicates that have mismatched data types”

v “Stored variable-length index keys”

v “Backward index scans for avoiding sort operations” on page 19

Capability to index predicates that have mismatched data types

In Version 8, you can now index many predicates that have mismatched data

types; as a result, query performance improves. You can join tables on columns

that have different data types and lengths, or you can provide a search value with

a data type or length that does not match the definition of a column. For example,

the C and C++ programming languages do not support the decimal data type, so

programs that are written in these languages often use the floating-point data type

for predicates on decimal columns. With Version 8 support for mismatched data

types and lengths, predicates like those in the preceding example can now be stage

1 predicates.

Stored variable-length index keys

In Version 7, an index-only access path cannot be used for short VARCHAR host

variables. In addition, varying-length columns that consist of VARCHAR and

VARGRAPHIC data are varying-length columns in tables, but they are padded to

their maximum length in index keys. Indexes that are padded require additional

storage.

As Figure 6 on page 19 shows, Version 8, support for true varying-length keys in

the index allows index-only access for indexes that have varying-length index keys

and reduces storage requirements. In most cases, index keys in which

Source tables for a query Materialized query table

Figure 5. An illustration of a materialized query table that is derived from two source tables

18 What’s New?

varying-length columns are not padded require less storage because only data is

stored in the index. Version 8 also gives you the flexibility to create or alter indexes

so that they have varying-length columns in the keys, and you can control whether

DB2 pads those columns in the index.

Backward index scans for avoiding sort operations

Version 8 provides the capability for backward index scans, which lets DB2 avoid a

sort. A sort is avoided when the DB2 optimizer determines that an ORDER BY

clause can be satisfied by traversing an existing index in a backward direction. In

prior releases, database designers would sometimes create a descending index for

the sole purpose of avoiding a sort. Such descending indexes can now be deleted

to improve performance because of the savings in index maintenance and reduced

disk usage.

Additional distribution statistics for improved optimization

To run efficiently, data warehousing, data mining, and ad hoc query applications

need statistics on columns that are in predicates, regardless of whether they are

leading columns of an index. In addition, distribution statistics on non-leading

index columns or non-indexed columns let DB2 make better access path decisions

when data is asymmetrically distributed.

In Version 8, you can use the RUNSTATS utility to collect the following additional

statistics:

v Frequency distributions for non-indexed columns or groups of columns

v Cardinality values for groups of non-indexed columns

v Least-frequently occurring values, most-frequently occurring values, or both, for

any group of columns

Improved optimization for dynamic SQL

Several enhancements improve optimization for dynamic SQL:

v A new bind option, REOPT(ONCE), allows DB2 to determine and store only

once at run time the access path for any dynamic SQL statement that contains

variable values. DB2 uses the first set of input variables to determine the access

path. The REOPT(ONCE) option can increase efficiency for dynamic SQL

statements that run multiple times because DB2 does not reoptimize the access

path each time a statement runs.

v A new clause of the EXPLAIN statement lets you obtain information about

statements that have been stored in the dynamic statement cache. As a result,

you can examine the current access path.

Improved trigger performance

In Version 8, DB2 requires fewer work files for processing conditional triggers. As

a result, trigger performance improves.

Key 1

Key 1 Key 2 Key 3

Key 2 Key 3

= Padding

Figure 6. An illustration of true varying-length index keys in Version 8 of DB2 UDB for z/OS

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 19

More parallelism for sort operations

In Version 8, DB2 performs more parallel processing of some sort operations that

are used in join processing. To ensure that parallel sort operations are

cost-effective, DB2 uses a cost model to determine whether to perform a parallel

sort.

Performance enhancements for star join qualified queries

The performance of a star join is critical to data warehousing applications in which

the main database design is a star schema. The star join implementation in DB2

UDB for z/OS must handle a large number of work files. Because work files prior

to Version 8 do not have indexes, sort-merge joins tend to be selected. As a result,

the cost of sorting can be great in both time and the amount of space required.

Version 8 provides enhancements that improve the optimization and execution of a

star join qualified query. Now, sparse indexes are supported on star join work files.

As a result, the DB2 optimizer selects the access path based on the estimated costs

of the access plans, which can boost query performance and can reduce the cost of

sorting a larger number of work files.

Multiple fetches and inserts allowed within a single SQL

statement

You can enhance the performance of your application programs by using

multiple-row FETCH and INSERT statements to request that DB2 send multiple

rows of data, at one time, to and from the database. Using these multiple-row

statements in local applications results in fewer accesses of the database. Using

these multiple-row statements in distributed applications results in fewer network

operations and a significant improvement in performance. Figure 7 illustrates the

difference between a series of single fetches and a single, multiple-row fetch

operation.

4096 partitions in a partitioned table space

As Figure 8 on page 21 shows, the maximum number of partitions in a partitioned

table space is increased from 254 to 4096 partitions in Version 8. If you consider

Figure 7. Before Version 8, you needed to use a series of single-row fetches to return many

rows of data. Now, in Version 8, you can use multiple fetches within a single SQL statement

to accomplish the same task more efficiently.

20 What’s New?

that use of 254 partitions allows you to use one partition per day for 8 months, an

increase to 4096 partitions extends those 8 months to 11 years.

As a result of the increased number of partitions in a partitioned table space, the

maximum size of a partitioned table is increased from 16 terabytes to 128 terabytes,

as shown in Figure 9.

The ability to have more partitions increases the granularity of your data and

decreases the size of your data sets. For example, if one of your applications (prior

to Version 8) stores daily data in separate partitions for one year, you would need

up to 366 partitions. If you keep that data for five years, you would need 1830

partitions. To work around the 254-partition limit, you would need to either

combine multiple days or weeks into partitions, or use simple table spaces and

lose the benefit of parallel processing for queries. With Version 8, you reap the

advantages of parallel processing for queries and utilities by using partitioned

254
partitions

4096
partitions

Prior to
Version 8

Now

Figure 8. Comparison of 254 partitions to 4096 partitions in a partitioned table space

Figure 9. Comparison of a 16-terabyte partitioned table to a 128-terabyte partitioned table

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 21

table spaces: You have the flexibility to start with a minimum number of partitions

and add more partitions as your needs change.

Greater resource control with stored procedures and

user-defined functions

In Version 8, DB2 UDB for z/OS gives you greater control over resource

utilization. You can now specify for each stored procedure or user-defined function

the maximum number of failures (program exceptions or abnormal termination, for

example) that are allowed before DB2 stops the routine. By specifying the most

appropriate value for an individual routine, you can let some routines continue to

be invoked for development and debugging, and stop other routines for

maintenance before they cause problems in a production environment. Additional

enhancements take advantage of z/OS Workload Manager functions that let

System Resource Manager and Workload Manager determine appropriate resource

utilization and recommend changes in the number of tasks that operate in a stored

procedure address space. The stored procedure manager then adds or deletes tasks

according to recommendations from Workload Manager.

Reduced overhead costs for data sharing workloads

Version 8 of DB2 UDB for z/OS provides two new batch processes that reduce the

amount of traffic to and from the coupling facility when you run Version 1 Release

4 of z/OS and level 12 of the coupling facility. Two new commands let you write

and register multiple pages to a group buffer pool, and read multiple pages from a

group buffer pool for castout processing. You can expect the greatest performance

benefits for data sharing workloads that update a large number of pages that

belong to group-buffer-pool-dependent objects.

Reduced lock propagation in the coupling facility

Version 8 improves the performance of plans and packages that are bound with

RELEASE(COMMIT) and increases the availability of your data because retained

parent L-locks no longer lock an entire table or a table space when a DB2 member

fails. You can now grant parent L-locks locally without invoking global contention

processing. As a result, locking overhead that is caused by false contention is

reduced.

Improved control for accounting aggregation

New e-business workloads that use the Recoverable Resource Manager Services

attachment facility (RRSAF) or the distributed data facility (DDF) can generate

enormous volumes of accounting records. To help reduce the volume of accounting

records, Version 8 provides a new installation option (a subsystem parameter) that

lets you accumulate data for RRSAF and DDF threads based on the following

criteria:

v The user ID of the end user

v The transaction name of the end user

v The workstation name of the end user

Of course, some activities (detailed performance monitoring, for example) require

detailed accounting data for RRSAF and DDF threads. With Version 8, you can

dynamically alter the subsystem parameter to activate or deactivate data

accumulation, which gives you the flexibility to meet your performance monitoring

requirements.

22 What’s New?

Improved package-level accounting

New e-business workloads often use packages to issue SQL statements. With

Version 8, package-level accounting contains additional detailed performance

metrics that let you easily determine which packages were used to issue the SQL

statements in your application workload. These metrics greatly simplify

performance analysis activities for stored procedure applications, SQLJ

applications, and DDF applications.

Reliability, availability, and serviceability

To keep your business competitive, the foundation of your e-business

infrastructure must be reliable, available, and serviceable. Version 8 of DB2 UDB

for z/OS continues to provide a strong foundation through the following

enhancements:

v “Greater availability and flexibility with online schema evolution”

v “Greater data availability with data-partitioned secondary indexes” on page 25

v “More flexibility and faster recovery with system-level point-in-time recovery”

on page 25

v “Improved utility functions” on page 26

v “Enhanced LPL recovery processing” on page 27

v “Change more parameters online without recycling DB2” on page 28

v “Increased maximum number of active and archive log data sets” on page 28

v “Autonomic space allocation” on page 28

Greater availability and flexibility with online schema

evolution

In prior releases, your data and applications were unavailable during operations to

alter schema definitions of table, table space, and index attributes, or to add, rotate,

or rebalance partitions. Now, in Version 8, you can change schema definitions

online for some table, table space, and index attributes or add, rotate, or rebalance

partitions without losing availability of your data or applications. (See Figure 10 on

page 24.) For example, you can change column types and lengths, add columns to

an index, add, rotate, or rebalance partitions. Related enhancements provide more

flexibility to change the clustering and partitioning of the data in a table.

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 23

Change column types and lengths

You can change the data type of a table column. The new definition is applied

immediately to all data that is in the associated table; when data rows are accessed,

those rows are formatted according to the new definition.

Add columns to an index

You can now append columns to the end of an existing index. If you add a column

to a table within the same unit of work in which the column is added to the index,

the index is available for access immediately.

Add, rotate, or rebalance partitions dynamically

In Version 8, you can add, rotate, or rebalance partitions dynamically while

maintaining availability of the partitions:

v You can add partitions at the end of a partitioned table space up to the

maximum limit that is defined for the table space. The changes take effect

immediately.

v You can reuse (or rotate) existing partitions for new data as old data is rolled

away. With this support, you can, for example, keep 12 months of data

continuously by using only 13 partitions. When you rotate partitions, you delete

all the data rows in the oldest (first) partition and then specify a new high

boundary for the table space. As a result, the oldest partition rotates to the last

logical partition in sequence (the thirteenth partition, in this example) and is

ready to hold new data.

v You can use the REBALANCE utility to rebalance partitions without causing a

negative impact on availability.

Change the partitioning and clustering of the data in your tables

Version 8 gives you more flexibility for partitioning and clustering the data in your

tables:

v You can create a partition without an index. As a result, you can improve

performance by eliminating an unnecessary index and the accompanying

overhead.

v You can drop a partitioning index or create a table without a partitioning index.

No access

Upgraded
subsystem

Prior to
Version 8

Now
R/W access

Original
table

definition

R/W
access

R/W
access

Change schema definitions:

alter column length, add,
rotate, or rebalance partitions

Figure 10. Greater availability with schema evolution

24 What’s New?

v You can define a clustering order that is different from the partitioning order.

For example, if your data is partitioned by month, you can cluster by customer

number within each partition.

v You can alter the clustering index.

Greater data availability with data-partitioned secondary

indexes

Version 8 of DB2 lets you partition secondary indexes according to the partitioning

scheme of the underlying data. Secondary indexes are nonpartitioning indexes of

partitioned tables. Partitioned secondary indexes are referred to as data-partitioned

secondary indexes. Data-partitioned secondary indexes can:

v Improve data availability during utility operations that operate at the partition

level, such as REORG PART, LOAD PART, and RECOVER PART. For example,

the BUILD2 phase and the accompanying outage are eliminated for REORG

PART operations.

v Streamline and improve the performance of partition-level operations, such as

rotating partitions. For example, the ALTER ROTATE PART operation performs a

mass delete without accessing and deleting individual keys.

v Allow secondary indexes to benefit from strategies that reduce overhead costs

that are incurred by data sharing.

More flexibility and faster recovery with system-level

point-in-time recovery

Enhancements to system-level point-in-time recovery for DB2 provide improved

usability, more flexibility, and faster recovery times. As Figure 11 on page 26 shows,

you can now recover your data to any point in time, regardless of whether you

have uncommitted units of work. As a result, data recovery time improves

significantly for large DB2 subsystems that contain more than 30 000 objects, which

means that the down time for the subsystem also decreases considerably. Two new

utilities provide the vehicle for system-level point-in-time recovery:

v The BACKUP SYSTEM utility provides fast volume-level copies of DB2

databases and logs. It relies on new DFSMShsm™ services in z/OS Version 1

Release 5 that automatically keep track of the volumes that need to be copied.

Using BACKUP SYSTEM is less disruptive than using the SET LOG SUSPEND

command for copy procedures because DB2 does not suspend writing to the log.

An advantage for data sharing is that BACKUP SYSTEM operates at the group

scope, whereas SET LOG SUSPEND operates at the member scope.

v The RESTORE SYSTEM utility recovers a DB2 subsystem to an arbitrary point in

time. RESTORE SYSTEM automatically handles any creates, drops, and LOG NO

events that might have occurred between the backup and the recovery point in

time.

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 25

Improved utility functions

Many of the Version 8 utility enhancements support other fundamental changes in

Version 8 that have been discussed previously:

v Long names (see “Extended limits for names and SQL statements” on page 11)

v Unicode (see “Significant support for Unicode and long names in the DB2

catalog” on page 12)

v 64-bit virtual addressing (“64-bit virtual storage” on page 17)

v Data-partitioned secondary indexes (see “Greater data availability with

data-partitioned secondary indexes” on page 25)

v System-level point-in-time recovery (see “More flexibility and faster recovery

with system-level point-in-time recovery” on page 25)

Other utility changes include:

v “Online REORG utility”

v “LOAD and UNLOAD utilities” on page 27

v “RUNSTATS distribution statistics” on page 27

v “Autonomic restart” on page 27

Online REORG utility

In addition to REORG changes that support data-partitioned secondary indexes, as

discussed in “Greater data availability with data-partitioned secondary indexes” on

page 25, you can now:

v Specify the SHRLEVEL CHANGE option for a REORG TABLESPACE DISCARD

operation.

Open.........Commit

Open..........Commit

Open.......................Commit

Open.......................Commit

Open..............Commit

Open..............Commit

Open...................................

Open...............................Commit

Open.............

Open.........................Commit

Open......Commit

Open......Commit

Open......Commit

Open......Commit

Open...............Commit...Commit

..........Commit

Open...............Commit

Open.

Open.........Commit

SET LOG SUSPEND
command issued:

SET LOG RESUME
command issued:

Suspend Resume

BACKUP SYSTEM
utility invoked:
Backup and

recovery begin

Time

Prior to
Version 8

Now

.......

Commit

Figure 11. More flexibility and faster recovery with enhancements to system-level

point-in-time recovery

26 What’s New?

v Reorganize DB2 catalog table spaces that have links if you specify SHRLEVEL

REFERENCE.

v Specify the SCOPE PENDING keyword to reorganize only the partitions that are

in a REORG-pending state (REORP) or an advisory REORG-pending (AREO)

state for a specific table space or a partition range.

Online CHECK INDEX utility

Enhancements to the online CHECK INDEX utility in Version 8 increase the

availability of your read-only data. New options let you specify:

v The number of seconds that the utility waits when draining a table space or an

index

v The maximum number of retries that are to be attempted

v The minimum duration, in seconds, between retries

LOAD and UNLOAD utilities

Prior to Version 8, you could not load a delimited input file into DB2 or unload a

delimited output file from DB2. A delimited file is a sequential file that contains row

and column delimiters.

Now, in Version 8, you can use the LOAD utility to load into DB2 a delimited

input file from another relational database. What’s more, you do not need to write

a program that converts the data into the correct format, or use INSERT processing

and give up the performance advantages of the LOAD utility.

In addition, you now can use the UNLOAD utility to unload a delimited output

file from DB2 to one or more files that are stored outside of DB2. You can then

load the data into another DB2 database in a z/OS environment or on other

operating systems, or import the data into an application in another relational

database.

RUNSTATS distribution statistics

Skewed data distributions are responsible for a high proportion of performance

problems with DB2 queries, especially in ad hoc queries. Symptoms of these

problems include join sequences that are not optimal, too much synchronous I/O,

and long response times. In addition, the ability of DB2 to make optimal decisions

about table join order and table join methods can be weakened if the distribution

of your data is asymmetrical, and you do not have distribution statistics on

non-leading indexed columns or non-indexed columns.

Improvements to the RUNSTATS utility in Version 8 let you collect distribution

statistics for non-leading indexed columns and non-indexed columns so that DB2

can use these statistics to select better access paths.

Autonomic restart

In Version 8, restarting utility jobs is easier because you no longer need to add the

RESTART or RESTART(PHASE) parameters to a utility job. DB2 attempts to restart

utility jobs that can be restarted online regardless of whether the RESTART

keyword is specified.

Enhanced LPL recovery processing

DB2 inserts entries for pages that are logically in error in a logical page list (LPL).

Version 8 of DB2 UDB for z/OS offers the following enhancements to LPL recovery

to improve usability, serviceability, availability, and performance:

Chapter 2. What’s new in Version 8 of DB2 UDB for z/OS? 27

v Automatic recovery of LPL pages: To avoid manual intervention for LPL

recovery through the START DATABASE command or the RECOVER utility,

DB2, in most cases, automatically initiates an LPL recovery processor to recover

pages as they are added to the LPL.

v Less-disruptive LPL recovery: The LPL recovery processor (by way of the START

DATABASE command or the new automatic LPL recovery feature), makes a

write claim instead of a drain on the object that is being recovered. As a result,

good pages in the object are available to SQL users, and performance is

improved because the claim is less disruptive than a drain.

Change more parameters online without recycling DB2

Version 7 provided support that let you change a set of subsystem parameters

online without recycling DB2. Version 8 expands that set to include many more

subsystem parameters that can be changed online. For example, you can now

change authorization IDs for the system operators or the system administrator,

change the sort pool size, and change the timeout limits for threads.

Increased maximum number of active and archive log data

sets

In Version 8, an increase in the maximum number of active and archive log data

sets per log copy increases recovery performance and scalability as the volume of

your data increases.

The maximum number of archive log volumes that are recorded in the BSDS is

increased from 1000 to 10 000 volumes per log copy. With a larger maximum

number of archive log volumes per log copy, you can avoid taking frequent image

copies.

The maximum number of active log data sets is increased from 31 to 93 per log

copy. Recovery performance is improved because reading active logs is much faster

than reading archive logs, and the additional active log capacity can decrease the

necessity to read archive logs in some cases. Also, increasing the number of active

logs can help avoid a full log condition if the offload task stalls or temporarily falls

behind.

Autonomic space allocation

Version 8 provides space allocation enhancements to improve performance,

increase data availability, and limit the occurrence of outages caused by lack of

space. DB2 can now calculate the amount of space to allocate to secondary extents

by using a sliding-scale algorithm. The first 127 extents are allocated in increasing

size, and the remaining extents are allocated based on the initial size of the data

set. This approach has several advantages:

v It minimizes the potential for wasted space by increasing the size of secondary

extents gradually.

v It prevents very large allocations for the remaining extents, which would likely

cause fragmentation.

v It does not require users to specify secondary space allocation values when

creating and altering table spaces and index spaces.

v It allows you, in theory, to always reach the maximum data set size without

running out of secondary extents.

28 What’s New?

	Contents
	Chapter 2. What's new in Version 8 of DB2 UDB for z/OS?
	More flexibility with SQL
	SELECT FROM INSERT statement
	Generation of unique sequential numbers for applications
	Ability to alter identity column attributes
	Dynamic scrollable cursors
	Scalar fullselects in SQL statements
	Integrated XML publishing functions in DB2
	Common table expressions in SQL statements
	Recursive SQL
	CURRENT PACKAGE PATH special register
	GET DIAGNOSTICS statement
	Compare null values with the DISTINCT predicate

	Improved security
	New built-in functions for data encryption and decryption
	New data encryption tool
	Multilevel security with row-level granularity
	Easier identification of system users
	CLIENT_ACCTNG special register
	CLIENT_APPLNAME special register
	CLIENT_USERID special register
	CLIENT_WRKSTNNAME special register

	Session variables
	Improved encrypted security in distributed computing environments

	Enhanced compatibility with the DB2 family
	Extended limits for names and SQL statements
	Longer column names
	Longer and more complex SQL statements
	Extensions to SQL procedure statements
	Longer index keys and predicates
	Greater number of tables joined in a single FROM clause
	Fewer restrictions for column functions
	Qualified columns in the INSERT statement
	ORDER BY clause for the SELECT INTO statement
	Expressions in the GROUP BY clause
	More than one DISTINCT keyword allowed in a single query
	Additional input format for timestamp strings
	Explicitly defined ROWID columns are not required for large objects
	Descriptions for plans and packages in the DB2 catalog
	Implicit drop of declared global temporary tables at commit

	Significant support for Unicode and long names in the DB2 catalog
	Unicode
	Long names
	Unicode, EBCDIC, and ASCII columns in the same SQL statement

	Network computing enhancements
	Increased portability of applications through consistent access to DB2 family servers
	Improved performance for remote queries
	Improvements in connectivity

	IBM z/OS Application Connectivity to DB2 for z/OS feature
	ODBC expands support for encoding schemes

	Scalability and performance
	64-bit virtual storage
	Materialized query tables
	Ability to use an index in more situations
	Capability to index predicates that have mismatched data types
	Stored variable-length index keys
	Backward index scans for avoiding sort operations

	Additional distribution statistics for improved optimization
	Improved optimization for dynamic SQL
	Improved trigger performance
	More parallelism for sort operations
	Performance enhancements for star join qualified queries
	Multiple fetches and inserts allowed within a single SQL statement
	4096 partitions in a partitioned table space
	Greater resource control with stored procedures and user-defined functions
	Reduced overhead costs for data sharing workloads
	Reduced lock propagation in the coupling facility
	Improved control for accounting aggregation
	Improved package-level accounting

	Reliability, availability, and serviceability
	Greater availability and flexibility with online schema evolution
	Change column types and lengths
	Add columns to an index
	Add, rotate, or rebalance partitions dynamically
	Change the partitioning and clustering of the data in your tables

	Greater data availability with data-partitioned secondary indexes
	More flexibility and faster recovery with system-level point-in-time recovery
	Improved utility functions
	Online REORG utility
	Online CHECK INDEX utility
	LOAD and UNLOAD utilities
	RUNSTATS distribution statistics
	Autonomic restart

	Enhanced LPL recovery processing
	Change more parameters online without recycling DB2
	Increased maximum number of active and archive log data sets
	Autonomic space allocation

